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Abstract

We demonstrate that the inversion method can be a very useful tool in providing
an infrared stabilization of 3D gauge theories, in combination with the mass
operator A2 in the Landau gauge. The numerical results will be unambiguous,
since the corresponding theory is ultraviolet finite in dimensional regularization,
making a renormalization scale or scheme obsolete. The proposed framework
is argued to be gauge invariant, by showing that the nonlocal gauge invariant
operator A2

min, which reduces to A2 in the Landau gauge, could be treated in
3D, in the sense that it is power counting renormalizable in any gauge. As a
corollary of our analysis, we are able to identify a whole set of power counting
renormalizable nonlocal operators of dimension two.

PACS numbers: 11.10.Kk, 11.10.Gh

1. Introduction

3D gauge theories are not only of a pure theoretical importance. For example, they naturally
appear as the very high temperature limit of their 4D counterpart [1], while 3D QED can be
used as an effective theory describing high temperature cuprate superconductors [2].

When studying 3D gauge theories, a key observation is that the gauge coupling g2 becomes
a dimensionful quantity. A positive consequence is the ensuing superrenormalizability of 3D
gauge theories, meaning that the ultraviolet sector is relatively well behaved. Unfortunately,

4 Work supported by FAPERJ, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro, under the program
Cientista do Nosso Estado, E-26/100.615/2007.
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this also inflicts a serious problem in the infrared [3]. A simple-dimensional counting allows
us to understand this problem intuitively. At consecutive orders in perturbation theory in the
massive coupling g2, an increasing number of inverse momenta is required to obtain a specific
dimension of e.g. a particular Green’s function under study. Consequently, at increasing order
of perturbation theory, the low momentum region becomes more and more divergent.

A natural solution to this problem might be the dynamical generation of a mass m, so
that a perturbative expansion in the dimensionless parameter g2

m
might emerge, ensuring a safe

infrared limit. This has stimulated several studies, [4–9] to quote only a few. A common
feature of the approaches of, for example, [4–7] is that a dynamical gluon mass is derived from
a certain gap equation, constructed in a particular approximation scheme, bearing nontrivial
solutions.

The aim of this paper is to investigate 3D gauge theories in the presence of the gauge
invariant nonlocal operator

A2
min = (V T )−1 min

U∈SU(N)

∫
d3x

(
AU

μ

)2
. (1)

In the first part of this paper, we shall prove its power counting renormalizability, making
the mass term m2A2

min a gauge invariant candidate for an infrared regularization. As a
nice byproduct of this proof, we shall be able to identify a whole class of gauge invariant
nonlocal operators which also enjoy the property of being UV powercounting renormalizable.
However, we shall discuss why A2

min plays a preferential role, since we must also take into
account potential infrared problems. In the second part we shall employ the inversion method
to get a meaningful perturbative expansion for 3D gauge theories when the regulating mass
coupled to A2

min is brought back to zero. This is done in the case of the Landau gauge, as A2
min

then reduces to the local operator A2, which has already been studied before, revealing several
interesting properties [10, 11]. We end with a discussion of the results.

2. The UV power counting renormalizability of A2
min in 3D

2.1. Preliminaries

We intend to use the following action in 3D Euclidean spacetime:

S =
∫

d3x

(
1

4
F 2

μν + b∂μAμ + c∂μDμc +
1

2
m2A2

μ

)
, (2)

which corresponds to a Yang–Mills theory plus Landau gauge fixing, supplemented with
a regulating mass term. It was not only proven that this action is renormalizable to all
orders of perturbation theory, but even that it is finite in dimensional regularization, i.e. no
renormalization is needed [10, 11].

There are two remaining questions to be answered. The added mass term ∝A2 does not
appear to be gauge invariant, and the hitherto free mass parameter m should be of a dynamical
nature. Since the 3D gauge coupling carries a dimension, one expects that the dynamics of
the theory will dictate m ∝ g2.

The operator A2
μ has a gauge invariant meaning in the Landau gauge, ∂A = 0. Indeed,

the gauge invariant operator (1) can be rewritten as a perturbative series [12]

A2
min = 1

2

∫
d3x

[
Aa

μ

(
δμν − ∂μ∂ν

∂2

)
Aa

ν − gf abc

(
∂ν

∂2
∂Aa

) (
1

∂2
∂Ab

)
Ac

ν

]
+ O(A4), (3)

and clearly A2
min = A2 when ∂A = 0.

2
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Recently, in 4D, it has been argued that the highly nonlocal operator A2
min might be

handled in a perturbative fashion [13]. The idea is to use the following termwise gauge
invariant representation of A2

min [14],

A2
min = Tr

∫
d3x

(
Fμν

1

D2
Fμν + 2ig

1

D2
Fλμ

[
1

D2
DκFκλ,

1

D2
DνFνμ

]

− 2ig
1

D2
Fλμ

[
1

D2
DκFκν,

1

D2
DνFλμ

])
+ O(F 4), (4)

added to the action in the following form:

Sm = m2Tr
∫

d3x

(
Fμν

1

D2
Fμν + 2ig

1

D2
Fλμ

[
1

D2
DκFκλ,

1

D2
DνFνμ

]

− 2ig
1

D2
Fλμ

[
1

D2
DκFκν,

1

D2
DνFλμ

])
+ O(F 4), (5)

or in a more condensed notation

Sm = m2Tr
∫

d3x(O2 + gO3 + g2O4 + · · ·), (6)

where Ok are gauge invariant functionals of the field strength F and the covariant derivative
D. As noted in [13], this expansion can be seen as one in operators with k legs where k counts
the lowest number of gluon legs present in the operator Ok .

Since the series (6) or (3) contains infinitely many nonlocal terms, it appears to be beyond
our possibilities to show that such a highly nonlocal operator might be renormalizable. In
general, the utmost we could achieve is to show the renormalizability up to a certain (low) order.
Therefore, we consider the expansion (6). Each of the nonlocal gauge invariant terms could
be studied separately. Such an approach was successfully employed in 4D in the case of the
first term, F 1

D2 F [15, 16]. At the cost of introducing a set of auxiliary bosonic and fermionic
fields, the action with the nonlocal operator added to it, was cast into a local form. Using the
many Ward identities of the resulting action, we were able to prove the renormalizability to
all orders of perturbation theory. We started from

S =
∫

d4x

(
1

4
Fa

μνF
a
μν − 1

4
m2Fa

μν[(D2)−1]abF b
μν

)
, (7)

recast into

Slocal =
∫

d4x

[
1

4
Fa

μνF
a
μν +

im

4
(B − B)aμνF

a
μν +

1

4

(
B

a

μνD
ab
σ Dbc

σ Bc
μν − G

a

μνD
ab
σ Dbc

σ Gc
μν

)]
,

(8)

with B,B a pair of complex bosonic antisymmetric tensor fields in the adjoint representation
and G,G a pair of anticommuting antisymmetric tensor fields, also in the adjoint
representation. We succeeded in constructing a gauge invariant classical action Scl containing
the mass parameter m which is renormalizable. This was proven to all orders of perturbation
theory in the class of linear covariant gauges, and explicitly checked up to 2-loop order
[15, 16]. In particular, this action reads

Sphys = Scl + Sgf , (9)

Scl =
∫

d4x

[
1

4
Fa

μνF
a
μν +

im

4
(B − B)aμνF

a
μν +

1

4

(
B

a

μνD
ab
σ Dbc

σ Bc
μν − G

a

μνD
ab
σ Dbc

σ Gc
μν

)
3



J. Phys. A: Math. Theor. 42 (2009) 085402 D Dudal et al

− 3

8
m2λ1

(
B

a

μνB
a
μν − G

a

μνG
a
μν

)
m2 λ3

32

(
B

a

μν − Ba
μν

)2

+
λabcd

16

(
B

a

μνB
b
μν − G

a

μνG
b
μν

)(
B

c

ρσBd
ρσ − G

c

ρσ Gd
ρσ

)]
, (10)

Sgf =
∫

d4x

(
α

2
baba + ba∂μAa

μ + ca∂μDab
μ cb

)
. (11)

We draw attention to the fact that an additional quartic tensor coupling λabcd , as well as two
new mass couplings λ1 and λ3 had to be introduced in order to maintain renormalizability.
This fact obscures the identification with the original operator F 1

D2 F , and hence with A2
min.

Nevertheless, at one loop, these extra couplings are not yet relevant in the renormalization
of A2

min, as found in [13]. The renormalizability was explicitly confirmed at one loop in a
general linear covariant gauge, with a gauge parameter independent anomalous dimension.
The retrieved value did coincide with the already known result for the anomalous dimension
of A2 in the Landau gauge [17, 18], as expected from the gauge invariance of A2

min and
the perturbative equivalence with A2. In this sense, the result of [13] is very interesting as it
provides evidence that A2

min could be consistently used at least at lowest order. Since it is gauge
invariant, one can opt to work in the Landau gauge, where it reduces to a single local operator,
which can enter the OPE for example. Needless to say, this also considerably simplifies
practical calculations. However, so far, the analysis was restricted to lowest order. Beyond
the 1-loop approximation, little is known. Things inevitably will become complicated since
the new coupling λabcd will explicitly enter the analysis5, and evidently, when A2

min would be
renormalizable, its anomalous dimension is not supposed to contain any new couplings.

In principle, a completely similar pathway could be followed in the 3D case. One
could investigate whether the consecutive terms in the expansion (5) are renormalizable, by
introducing extra fields, etc. Almost needless to say, this is still a very cumbersome job. For the
first term O2, this would amount to a 3D analysis of its localized version similar to 4D [15, 16].
The Lorentz structure might be simplified a bit by using the dual vector field fμ = 1

2εμκλFκλ

and analogs for the localizing fields. A potential caveat would be the emergence of the extra
couplings, which again make it obscure (or even make it impossible) to say that O2 itself is a
renormalizable operator. However, it might be very well possible that the massive 3D version
of (9) without extra couplings (λ1 = λ3 = λabcd = 0) is renormalizable. We recall that these
couplings were originally introduced to absorb generated new counterterms. At one loop, the
3D theory ought to be finite, as the ‘master integral’ is finite in dimensional regularization
[11], beyond two loops no new counterterms can arise (similar arguments as in [11]), so the
only possible source of these extra couplings would lie at 2-loop order. In principle, this
could be checked similarly as done for A2 in the Landau gauge [11]. In this work, we shall
follow a slightly different route, as the situation might be more appealing in 3D due to the
superrenormalizability.

2.2. Inductive proof of the UV power counting renormalizability of A2
min

In this section, we shall establish the UV power counting renormalizability of A2
min. As this

proof will turn out to be rather technical, let us give a brief sketch of the main argument. We note
that in the expansion (4), vertices will appear with an arbitrary power of the coupling g. Hence,
as g becomes dimensionful in 3D, vertices with a certain power of g will necessarily induce
a certain power of compensating momenta in the denominator of the analytical expression

5 The 2-loop anomalous dimension of m is λabcd dependent [16].
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corresponding to a Feynman diagram containing this vertex in order to obtain the correct
dimensionality. Therefore, one may suspect that this A2

min could be UV power counting
renormalizable in 3D.

Let us now put the previous line of intuitive reasoning on a more formal footing. We start
the discussion from the operators Ok defined in expression (6). These operators give rise to a
set of new vertices. We shall give a diagrammatical inductive argument that these vertices are
sufficiently suppressed in the UV such that no new ultraviolet divergences will appear. The
already present counterterms6 of the starting action should be sufficient to render the complete
theory finite.

The mass dimension of the operator Ok is actually given by dim[Ok] = 2 − k
2 , since we

have dim[g] = 1
2 . We are in 3D, and each vertex is already multiplied by m2. Consider a vertex

Vi with i (i � 2) gluons legs present. We are interested in the high momentum influence of
such a vertex Vi , i.e. we are interested in its UV ‘cost’ for the renormalizability analysis. Since
dim[Aμ] = 1

2 and a vertex with i legs is multiplied by gi−2, we can conclude that Vi ∼ 1
Qi−2 ,

where we represent in general (a combination of) momenta by the rather symbolic notation Q.
Consider now a random renormalizable set of diagrams of the original theory. More

precisely, we consider an arbitrary set of (connected) n-point functions. Since the original
theory is supposed to be renormalizable, its n-point functions are finite after including all the
necessary counterterms. To begin, we want to attach a single vertex Vi onto these n-point
functions, in order to obtain a certain n′-point function. One can check that we obtain all
possibilities just by connecting a series of external gluon legs. As a consequence there are
only two possible operations we can undertake:

1. We can attach an external gluon leg of the vertex Vi to an external gluon leg of an arbitrary
n-point function. Take � the number of gluon legs of Vi attached to original diagrams,
then 1 � � � i.

2. We can also glue two gluon legs of the vertex Vi together. We assume that in total 2s legs
are pairwise closed on each other to form loops.

After carrying out these operations, e gluon legs of the vertex Vi remain and will serve as
external legs. Hence, we have

2s + � + e = i. (12)

We note that the above procedure will generate all possible n′-point functions of the new
theory in which a single new vertex Vi has been used, as the original starting set was arbitrary.

We shall now search for an estimate of the UV ‘weight’ W caused by the new vertex
insertion. We shall work in a ‘worst-case scenario’, i.e. we always consider the case that
the UV behavior is the worst of possible occurring scenarios. In order to make things as
comprehensible as possible, we shall explore all possible occurring scenarios one by one.

2.2.1. The vertex. As already explained before, the vertex Vi will induce a weight

WV ∼ 1

Qi−2
. (13)

2.2.2. The s loops. As it is easily checked, the 2s legs closing on each other will generate
the following contribution after integration:

Ws ∼
∫

(d3Q)s

(Q2)s
∼ Qs. (14)

6 As far as these are existing, of course, in case the starting theory would be finite.

5
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Q

(a)

Q

(b) (c) (d)

Figure 1. The possible Feynman diagram configurations for Case 1. Fat lines refer to the new
vertex Vi , while normal lines to the original theory.

2.2.3. The attachment of the � legs. Each of the � legs of Vi shall be glued to an external leg
of an original diagram, which is part of a renormalizable set. Such an external leg is coming
from a 3- or 4-point vertex7 of the original Yang–Mills theory. We will consider case by case,
whereby every case is determined by the number of legs of Vi that ‘arrives’ at the same vertex
of the original diagram.

• Case 1: the single attachment
Let us assume that there are �1 spots at which a single leg arrives. There are four scenarios,
as shown in figure 1:

1. �′
1a by using a 3-vertex with 2 external legs. As clearly depicted in figure 1(a), this

corresponds to using �′
1a times a tree level 3-point vertex as a starting point. Each

time, one leg of it is glued to a leg of the new vertex Vi . The UV weight is obtained
as

W�′
1a

∼
(

1

Q2
Q

)�′
1a

∼ 1

Q�′
1a

. (15)

The 1
Q2 corresponds to the extra propagator caused by gluing 2 legs together, the Q

comes from the 3-point vertex8, and there are no loop integrations possible in this
case.

2. �′
1b by using a 3-vertex with 1 or 0 external legs. In comparison with the previous

case, one of the legs no longer serves as an external leg, but becomes connected
itself to another vertex of the old diagram. This possibility is depicted in figure
1(b), where the gray area stands for any other diagram9. In the current case, one
can create additional loops which will influence the to-be-derived weight factor. In
addition to the foregoing weight factor, we shall also encounter extra loop integrals.
In particular,

W�′
1b

∼
(∫

d3Q
1

Q2
Q

)�′
1b

∼ (Q2)�
′
1b . (16)

7 The 3 refers to the 3-gluon and ghost–gluon vertex. For simplicity, we have omitted the quarks for the moment.
8 Note that this is a worst-case scenario, as the ghost–gluon vertex does not carry a momentum factor.
9 In order not to overload the picture, we did not draw (the) other leg(s) connected to the gray blob assuring that the
final diagram would be 1PI.
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Q

(a)

Q

(b) (c) (d)

Figure 2. The possible Feynman diagram configurations for Case 2.

However, this counting procedure is not as fine as desired to obtain a reasonable final
result, being a sufficiently suppressed UV weight. Fortunately, there is an alternative
way of obtaining such kind of vertex insertion, which allows for a refined weight
factor. Namely, taking a look at figure 1(b), we see that the original diagram can
be thought of as another diagram of the old theory that we have cut open, added an
extra old 3-vertex to it, and then we have attached to this extra vertex the legs coming
from the new vertex Vi . The upshot of this viewpoint is that now, we can take into
account that the ‘cut & paste’ operation on the new original diagram brings an extra
propagator, namely 1

Q2 , into the game. As such, we obtain

W�′
1b

∼
(∫

d3Q
1

(Q2)2
Q

)�′
1b

∼ (1)�
′
1b = 1 (17)

rather than (16).
A word of caution on the emerging loop integrals: it should be understood that

these loop integrations are performed at the end, when all attaching operations are
done. However, for the purpose of counting the UV weight, we have distributed them
over the several subcases, since this does not influence the formal power counting
and allows for a more efficient bookkeeping.

3. �′′
1a by using a 4-vertex with 3 external legs. This case (see figure 1(c)) can be treated

in an analogous fashion as the �′
1a case, albeit no Q will appear since a 4-vertex does

not contain momentum dependent factors. We find

W�′′
1a

∼ 1

(Q2)�
′′
1a

. (18)

4. �′′
1b by using a 4-vertex with 2,1 or 0 external legs. This is analogous as the �′

1b case,
but without the Q, thus yielding

W�′′
1b

∼
(∫

d3Q
1

(Q2)2

)�′′
1b

∼ 1

Q�′′
1b

. (19)

The corresponding diagram is shown in figure 1(d).

• Case 2: the double attachment
Let us assume that there are �2 spots at which 2 legs arrive (see figure 2), whereby
evidently each time a loop is created. Also here, four configurations arise:

7
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1. �′
2a by using a 3-vertex with 1 external leg. The following UV weight is found:

W�′
2a

∼
(∫

d3Q
1

(Q2)2
Q

)�′
2a

∼ 1. (20)

For the benefit of the reader, let us again explain the origin of the different components
in the previous weight factor. There is a loop integral, the two propagators building
the loop and an extra Q corresponding to the 3-vertex (cf figure 2(a)).

2. �′
2b by using a 3-vertex with 0 external legs. Using a slightly adapted argument,

namely a pure ‘paste’ one, we obtain in this case (see figure 2(b))

W�′
2b

∼
(∫

(d3Q)2 1

(Q2)3
Q

)�′
2b

∼ Q�′
2b . (21)

Depicting the procedure for the reader: we attached 2 legs of the new vertex Vi to a
single external leg of the gray blob by means of 3-gluon vertex.

3. �′′
2a by using a 4-vertex with 2 external legs. Now one recovers (see figure 2(c))

W�′′
2a

∼
(∫

d3Q
1

(Q2)2

)�′′
2a

∼ 1

Q�′′
2a

. (22)

4. �′′
2b by using a 4-vertex with 1 or 0 external legs. For the fourth double attachment

scenario (see figure 2(d)), we have

W�′′
2b

∼
(∫

(d3Q)2 1

(Q2)3

)�′′
2b

∼ 1, (23)

which is obtained by the ‘cut & paste’ logic.

• Case 3: the triple attachment
Let us assume that there are �3 spots at which 3 legs arrive. In this case, we observe three
options:

1. �′
3 by using a 3-vertex. This is the simplest case, as no external legs are available.

We find

W�′
3
∼

(∫
(d3Q)2 1

(Q2)3
Q

)�′
3

∼ Q�′
3 . (24)

There is a double loop integral, as it immediately follows from the diagram displayed
in figure 3(a).

2. �′′
3a by using a 4-vertex with 1 external leg. From figure 3(b), we find

W�′′
3a

∼
(∫

(d3Q)2 1

(Q2)3

)�′′
3a

∼ 1. (25)

3. �′′
3b by using a 4-vertex with 0 external legs. Once more employing the ‘cut & paste’

argument leads us to

W�′′
3b

∼
(∫

(d3Q)3 1

(Q2)4

)�′′
3b

∼ Q�′′
3b . (26)

The corresponding diagram is shown in figure 3(c).

• Case 4: the quadruple attachment
Finally, we can assume that there are �4 spots at which 4 legs arrive. Evidently, only one
possibility pops up

W�4 ∼
(∫

(d3Q)3 1

(Q2)4

)�4

∼ Q�4 . (27)

This was obtained analogously as in Case 2.2.

8
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Q

(a) (b) (c)

Figure 3. The possible Feynman diagram configurations for Case 3.

Figure 4. The possible Feynman diagram configuration for Case 4.

For later use, we mention that

� = �′
1a + �′

1b + �′′
1a + �′′

1b︸ ︷︷ ︸
=�1

+2 (�′
2a + �′

2b + �′′
2a + �′′

2b)︸ ︷︷ ︸
=�2

+3 (�′
3 + �′′

3a + �′′
3b)︸ ︷︷ ︸

=�3

+4�4, (28)

which is readily checked.
We are now ready to combine all the obtained information into a single estimate for the

UV weight

W ∼ 1

Q3
WVWsW�′

1a
W�′

1b
W�′′

1a
W�′′

1b
W�′

2a
W�′

2b
W�′′

2a
W�′′

2b
W�′

3a
W�′′

3a
W�′′

3b
W�4 . (29)

We introduced a factor 1
Q3 , which serves as a ‘correcting’ weight factor related to local

momentum conservation at the vertex Vi . During the derivation of the different weight factors,
we have always assumed that the introduced loop integrals were independent, but momentum
conservation at Vi will at least kill one of these. Let us also mention here that the e external
momenta of Vi will get related to the other external momenta of the final diagram by means
of global momentum conservation.

9
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Simplifying expression (29), we find for the total weight:

W ∼ 1

Qκ
,

with κ = (i − 2) + 3 − s + �′
1a + 2�′′

1a + �′′
1b − �′

2b + �′′
2a − �′

3 − �′′
3b − �4. (30)

The power κ can be further simplified by means of (12) and (28), which leads to

κ = 1 + s + e + 2�′
1a + �′

1b + 3�′′
1a + 2�′′

1b + 2�′
2a + �′

2b + 3�′′
2a + 2�′′

2b

+ 2�′′
3 + 3�′′

3a + 2�′′
3b + 3�4 > 0. (31)

Recapitulating, the power of 1
Q

is strictly positive, meaning that the UV weight W , (30), of
the new vertex is under control very well when Q ∼ ∞.

So far, we have ignored the presence of quarks. The counting analysis will however
remain valid even in that case. The only cases in which the 3-point quark–gluon vertex
will appear and influence the power counting, correspond to the diagrams displayed in the
figures 1(a) or 1(b). However, the situation corresponding to the case 1(a) is even further
improved since the quark–gluon vertex does not contain an explicit momentum dependence.
For the case of 1(b), we note that the extra quark propagator will behave as 1

Q
instead of 1

Q2 ,
but since there is no Q coming from the vertex itself, the eventual counting remains unaltered
since ‘ 1

Q2 Q = 1
Q

’.
To close the inductive argument, we can of course repeat the previous argument when we

allow a second, third, . . . new vertex of the type Vi into where we are now: the theory plus
one single vertex. The latter one has just been shown to behave well in the UV. We conclude
that any number of new vertices added to the theory will only induce UV harmless additional
(pieces of) diagrams.

Before closing this section, a few more words are to be devoted to the i = 2 case. Setting
i = 2 (and thus s = e = 0) in the UV estimate (30), we see that also the 2-legged insertion
is UV safe when used to construct new diagrams starting from an originally renormalizable
theory. In this case, this would be massless 3D YM, whose perturbation theory is unfortunately
ill-defined. We can however circumvent this problem. In every ‘conventional’ gauge, there
exists a renormalizable (gauge variant) mass operator: the Landau [19], the linear covariant
[20], the Curci–Ferrari [21], the maximal Abelian [21] and a class of nonlinear covariant
gauges [22]. Strictly speaking, this was proven only in 4D, with the exception of the Landau
and Curci–Ferrari gauges which were also explicitly analyzed in 3D [10], but the algebraic
renormalizability analysis of the mass operators does not really depend on the spacetime
dimension, and all the relevant Ward identities will remain valid in 3D. Continuing our
reasoning, we choose a gauge to work in and add an IR regulating mass term to it. Starting
from this theory, we can apply the foregoing arguments of this subsection also for the 2-legged
insertion, and consequently conclude that A2

min is power counting renormalizable in any of
these gauges. Once this is established, we can drop again the temporarily introduced gauge
variant mass term and immediately add the gauge invariant mass term ∝ A2

min to the action.
Summarizing, we have thus demonstrated that A2

min should be power counting
renormalizable in 3D. The gauge invariant mass operator A2

min should thus be consistent
with the ultraviolet renormalizability. For practical calculations, it would still be technically
challenging to calculate with A2

min even in the Feynman gauge. However, since it is explicitly
gauge invariant, we do not make any sacrifices choosing to work in the clearly preferable
Landau gauge, in which case we have the relatively simple action (2) at our disposal. In this
case, we also do not have to worry about the overabundance of 1

∂2 in the expressions (3) or
(4), which could cause IR troubles during the calculation of the Feynman integrals. Due to
the gauge invariance and the subsequent choice of the Landau gauge where no potentially

10
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dangerous 1
∂2 terms are present, it is obvious that these possible infrared divergences cannot

influence physical quantities (they should cancel out if occurring in intermediate results). We
shall come back to this issue at the end of section 3.

2.3. A more general class of powercounting renormalizable gauge invariant 2D operators
and the preferred role of A2

min

As the attentive reader might have noticed, we can extract more interesting information from
our proof than simply the UV powercounting renomalizability of A2

min. In fact, all the operators
Oi are separately UV powercounting renomalizable. A fortiori, so is any (infinite) linear
combination of those. However, there is more to the story in 3D than just UV powercounting
renormalizability, we should also take the infrared safety into account. First of all, O2 should
be present as this is the only one that will give rise to a mass in the gluon propagator, which
can serve as a natural infrared cut-off. Secondly, we should also be aware of the potential
infrared danger caused by the 1

∂2 ’s in the interaction terms. It is exactly our point that by using
a particular series of these operator, namely A2

min, one can motivate that no infrared dangerous
terms will occur when calculating gauge invariant quantities, as we have done at the end of
the previous subsection.

3. Removal of the regulating mass parameter m

3.1. The inversion method

Albeit that we have regularized the 3D gauge theory in a gauge invariant fashion by the
introduction of the mass m, it is still a mass introduced by hand. The next goal is to get rid of
this arbitrary parameter.

We shall explain the inversion method with the example of the pole mass. Consider the
1-loop gauge boson polarization tensor πab

μν , which can be decomposed in the traditional way

πab
μν(q

2) = δab

(
δμν − qμqν

q2

)
π(q2) + δab qμqν

q2
ω(q2). (32)

It is then easily shown that the corresponding shift in the tree level mass will be given by

m2 → m2 + π(q2). (33)

The pole mass (squared) m2
p is defined as that value of (−q2) such that q2 + m2 + π(q2) = 0.

As we are working with a perturbative series, this can be solved in an iterative way, so that at
lowest order

m2
p = m2 + g2π1(−m2), (34)

where π1(q
2) is the 1-loop contribution to the self-energy.

Having found an expression for the pole mass mp in terms of the regulating mass m,

m2
p = m2

(
1 + a1

g2

m
+ a2

g4

m2
+ · · ·

)
≡ m2A(m2), (35)

the question remains what we must do with it, since m should in principle become zero again
at the end of any calculation, to restore equivalence with the original starting massless YM
action. One option is to simply set m = 0 in (35). However, as outlined in [23], (certain)
nonperturbative effects can be taken into account when the series (35) is inverted as follows:

m2 = m2
p

(
1 + b1

g2

mp

+ b2
g4

m2
p

+ · · ·
)

≡ m2
pB

(
m2

p

)
. (36)

11
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Apparently, m = 0 can now be realized in two ways: by setting mp = 0 corresponding to the
perturbative (potentially ill-defined) solution, but also by solving the gap equation

B
(
m2

p

) = 0, (37)

which can give rise to a nontrivial solution m2
p 	= 0, whereby that nevertheless m = 0!

We used the example of the pole mass mp to explain the inversion philosophy, but
also other quantities Q could be handled: the regulating mass m is introduced to ensure a
meaningful perturbative series for Q(m), and after inversion a meaningful (finite) result can
be found for Q even for m = 0, by solving the gap equation m(Q) = 0. Hence, it appears
that the inversion method can be a very useful tool to obtain results in superrenormalizable
quantum field theories, which are plagued by infrared instabilities.

3.2. Explicit calculations

We now turn to an explicit computation. We have calculated the gauge boson self-energy at
one loop by evaluating the contributing four Feynman diagrams in three dimensions where
we also include massless quarks. The diagrams are generated by the QGRAF package, [24],
and converted to FORM input notation where FORM is a symbolic manipulation language, [25].
The self-energy is then reduced to a set of master 1-loop integrals which have previously been
determined in [26]. While these have been deduced in dimensional regularization in d = 3 −
2ε, the relevant 1-loop integrals are in fact finite in three dimensions. Hence we find that the
transverse part of the self-energy is

π(q2) = −g2

8
TF Nf

√
q2 +

g2N

π

{
7

32
m − 1

32

m3

q2
+

5

32

q2

m
+

5

8

√
q2arctan

(
1

2

√
q2

m

)

− 1

2

√
q2

m2

q2
arctan

(
1

2

√
q2

m

)
+

1

8

√
q2

q2

m2
arctan

(
1

2

√
q2

m

)

− 1

64

√
q2

(q2)2

m4
arctan

(
1

2

√
q2

m

)
− 5

16

√
q2arctan

(√
q2

m

)

+
1

32

√
q2

m4

(q2)2
arctan

(√
q2

m

)
− 1

8

√
q2

m2

q2
arctan

(√
q2

m

)

− 1

8

√
q2

q2

m2
arctan

(√
q2

m

)
+

1

32

√
q2

(q2)2

m4
arctan

(√
q2

m

)}

+ g2N

{
1

64

√
q2 − 1

128

√
q2

(q2)2

m4

}
(38)

for the transverse component, and

ω(q2) = g2N

π

{
− 1

16
m +

1

16

m3

q2
− 1

16

√
q2arctan

(√
q2

m

)
− 1

16

√
q2

m4

(q2)2
arctan

(√
q2

m

)

− 1

8

√
q2

m2

q2
arctan

(√
q2

m

)}
+ g2N

√
q2

32
(39)

for the longitudinal component. The reader might be a little confused, as the computed 1-
loop self-energy πab

μν is apparently not transverse. However, the Ward identity in the massive
Landau case does not predict a transverse self-energy10. Details can be found in the appendix.
10 Evidently, the propagator (connected 2-point function) is still transverse.
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3.3. Back to the pole mass

Let us return to the determination of the pole mass, at one loop, given by

m2
p = m2 + g2π1(−m2). (40)

A few complications arise. A first one is the appearance of11 ArcTan(i) = i∞ in π(−m2), but
fortunately, these terms cancel amongst each other12. Less fortunately, the presence of

√
q2

results in a complex valued pole mass. We find

m2
p = m2 − i

8
TF Nf g2m +

N

π

(
3

32
− 63

128
ln 3

)
g2m + iN

1

128
g2m + · · · , (41)

since arctan
(

i
2

) = i
2 ln 3. Performing the inversion and solving the induced gap equation, we

obtain

mp = − i

8
TF Nf g2 +

N

π

(
3

32
− 63

128
ln 3

)
g2 + iN

1

128
g2 + · · · . (42)

It is interesting that, using a different approach and different mass operators, the works [6, 7]
also report a complex pole mass in some cases, depending on the employed (gauge invariant)
mass operator.

We recall here that 3D gauge theories are also confining. This means that the gluon itself
is not a physical particle, and as such, unitarity should not be expected at the level of the
elementary gluon excitations. Therefore, we certainly do not claim that we have obtained
massive gauge bosons with three physical polarizations, even if the eventual pole mass would
have been real valued. Note that unitarity at the level of the gluons was also not mentioned in
e.g. [6, 7]. The main point of these papers and the current work is to find a way to regulate
the 3D gauge theory to allow for a consistent expansion. Once this is done, one could try to
have a look at the physical excitations, which are supposed to be massive glueball states, a
fact supported by the 3D lattice data [27]. For example, one could try to construct a bound
state of gluons using standard techniques, or one could study gauge invariant correlators like〈
F 2

μν(x)F 2
μν(y)

〉
, since the operator F 2

μν has the correct quantum numbers to create/annihilate
a scalar glueball. This is however beyond the scope of this paper, but let us only underline
that an explicit calculation of

〈
F 2

μν(x)F 2
μν(y)

〉
would also be plagued by infrared singularities

in 3D, unless some regulating mechanism is being provided.

3.4. Applying the inversion method to the gluon propagator

As a second example, we shall now determine an estimate for the gluon propagator. In our
conventions, the gluon propagator reads

D(p) = 1

p2 + m2 + π(p2,m2)
, (43)

which we have calculated explicitly to 1-loop order. For any value of the Euclidean momentum
p = p∗, we can invert (43) to get m2 = F(D(p∗)), and then solve F(D(p∗)) = 0 in order to
obtain a value for D(p∗). Since we have

1

D(p)
= p2 + m2 + g2π1(p

2,m2) (44)

at lowest order, where the value of π1(p
2,m2) can be extracted from (38), we can solve for

m2 in an iterative way as follows:

m2 = ξ(p) − g2π1(p
2, ξ), (45)

11 We recall that arctan(z) = 1
2i ln 1+iz

1−iz .
12 As a matter of fact, also the longitudinal part is finite at q2 = −m2.
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Figure 5. The gluon propagator D(p), in units g2 = 1, for N = 3.

where we put ξ(p) = 1
D(p)

− p2 for notational simplicity. Assuming that ξ∗(p) obeys

ξ∗(p) − g2π1(p
2, ξ∗(p)) = 0, (46)

we arrive at the following 1-loop estimate for the 3D gluon propagator:

D(p) = 1

p2 + ξ∗(p)
. (47)

We plotted D(p) as a function of p in figure 5.
Since we are still using a series expansion, one might wonder if we have any control over

this expansion? We recall that the formal counting of the orders in the expansion is done by
g2, which unfortunately carries a dimension, hence g2 is not really suitable as an expansion
parameter. However, taking a look at the inverted series (46), we note that we can say that g2√

ξ∗
will emerge as a natural dimensionless expansion parameter at each order13. In addition, in
a D-dimensional spacetime and in the absence of quarks (Nf = 0), the coupling constant is
always accompanied by an additional suppressing factor N

(4π)D/2 due to the loop integrations.

In figure 6, we have therefore plotted the quantity y(p) = g2N

(4π)3/2
√

ξ∗(p)
in function of the

momentum p. We recognize this is a rude way of estimating the acceptability of a perturbative
approach, but at least we can be satisfied that y is sufficiently small if we do not come too
close to zero momentum.

3.5. A few extra words on A2
min beyond the Landau gauge

We recall that A2 is not gauge invariant, but in the Landau gauge it equals A2
min, and we

motivated that the latter gauge invariant quantity is power counting renormalizable in 3D,
assuring that we, in principle, considered a gauge invariant regularization. We draw attention
to the fact that the ghost in the Landau gauge is still massless, and might introduce additional
infrared instabilities14. In order to overcome these, one might consider using the Curci–Ferrari

13 This amounts to a dynamically realized version of the naively expected g2

m
in the presence of a regulating mass

parameter m.
14 These were not observed during the 2-loop calculations reported in [11], despite the presence of massless ghosts
in the Landau gauge.
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Figure 6. The expansion parameter y, for N = 3.

gauge, a generalization of the Landau gauge, in which case the ghosts also attain a mass
[10, 11]. At the end of such a calculation, the limit to the Landau gauge can be considered.
However, since the ghost mass is explicitly gauge parameter dependent, it will not enter gauge
invariant quantities, and as such, the Landau gauge could be immediately used to calculate
gauge invariant quantities without risking extra infrared divergences.

The question remains what to do if we would like to calculate e.g. the gluon propagator
D(p) in the linear covariant gauges with A2

min? Infrared singularities coming from 1
∂2 ’s in (5)

can be avoided by using

Sm = m2Tr
∫

d3x

(
Fμν

1

D2 + ρ2
Fμν + 2ig

1

D2 + ρ2
Fλμ

[
1

D2 + ρ2
DκFκλ,

1

D2 + ρ2
DνFνμ

]

− 2ig
1

D2 + ρ2
Fλμ

[
1

D2 + ρ2
DκFκν,

1

D2 + ρ2
DνFλμ

])
+ O(F 4) (48)

instead of (5). We introduced an extra mass parameter ρ2, but neither the gauge invariance nor
good UV behavior are compromised by this15. The potentially dangerous 1

∂2 will get replaced
by the IR safe 1

∂2+ρ2 . As such, we will get a well defined D(p,m2, ρ2). Once this is done, one

can check whether the limit ρ2 → 0 exists or not. In the Landau gauge, this should be the
case as already explained before, in which case we are back to A2

min. If not, one can perform
a first inversion with respect to ρ2 to find a sensible D(p,m2), starting from which a second
inversion can be done to ensure m2 = 0.

4. Discussion

The purpose of this paper was to illustrate that inclusion of the operator A2 in combination with
the inversion method allows for a consistent (i.e. infrared protected) perturbative expansion of
basically any quantity. However, there are other major sources of effects beyond (regularized)
perturbation theory. For example, we can mention the existence of Gribov (gauge) copies
in the Landau gauge. Trying to restrict the integration measure in order to take these copies
into account, can have a profound influence on the gluon propagator, analogously as in 4D

15 Note that a similar kind of modification would not be possible using the series (3), as this would spoil the gauge
invariance.
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[28]. The restriction introduces another mass scale γ in the theory [29], and we can expect
that γ ∝ g2 in 3D. A standard Gribov-like propagator looks like p2

p4+γ 4 , clearly having two

complex poles at p2 = ±iγ 2. The Gribov restriction is important as a theoretical tool to
find a violation of positivity in the gluon propagator, indicative of confinement [29]. In this
light, dynamical gluon mass scales, complex or real, should not be directly related to massive
‘physical’ gluons, as these are confined and hence unphysical. Therefore, a complex pole
mass as found here or in other works [6, 7] is not necessarily a catastrophe. We recall that 3D
gauge theories, although that the classical/perturbative interaction potential is already mildly
(namely, logarithmically) confining, also display ‘true’ confinement through a linear potential,
see e.g. [27]. The origin of this piece of the potential is not evident.

When we compare our propagator displayed in figure 5 with the lattice result of [30], then
it is immediately clear that the big difference is located in the deep infrared: the lattice results
indicate a finite gluon propagator near zero momentum. But at larger momenta, the inversion
mechanism described in this paper which regulates the theory can give acceptable results.

To conclude, it would be recommendable to pursue e.g. an analytical study in 3D based
on [31] taking into account the existence of Gribov copies, and find out whether a more
qualititative agreement with the available lattice data can be found also in 3D [29, 32]. At
the same time, it can be investigated whether the Gribov scale γ would serve as a natural IR
regulator.
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Appendix A. The Ward identity for the gluon self-energy

We start from the complete classical action

� = SYM + SLandau + Sext + s

∫
d3x

(
1

2
τAa

μAa
μ

)

=
∫

d3x

(
1

4
Fa

μνF
a
μν + ba∂μAa

μ + ca∂μDab
μ cb +

1

2
JAa

μAa
μ + τAa

μ∂μca

−�a
μDab

μ cb +
g

2
f abcLacbcc

)
, (A.1)

supplemented with the necessary extra (external) source terms, e.g. J which is used to couple
the operator A2 to the theory. Moreover, s denotes the usual BRST symmetry generator,

sAa
μ = −(Dμc)a, sca = 1

2gf abccbcc, sca = ba, sba = 0, (A.2)

extended to the sources by means of

sτ = J, sJ = 0, s�a
μ = 0, sLa = 0. (A.3)

The corresponding Slavnov–Taylor identity reads

S(�) =
∫

d3x

(
δ�

δ�a
μ

δ�

δAa
μ

+
δ�

δLa

δ�

δca
+ ba δ�

δca + J
δ�

δτ

)
= 0. (A.4)
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The Ward identity for the vacuum polarization can be derived from this Slavnov–Taylor
identity, suitably extended to the quantum level. At the 1-loop level, one has

� = � + h̄�1, (A.5)

so that the 1-loop Slavnov–Taylor identity becomes∫
d3x

(
δ�1

δ�a
μ

δ�

δAa
μ

+
δ�

δ�a
μ

δ�1

δAa
μ

+
δ�1

δLa

δ�

δca
+

δ�

δLa

δ�1

δca
+ ba δ�1

δca + J
δ�1

δτ

)
= 0. (A.6)

Using16

δ�1

δ�a
μ

= [−(
Dab

μ cb
)
�

]1
,

δ�1

δLa
=

[(
g

2
f abccbcc

)
�

]1

,
δ�1

δτ
= [(

Aa
μ∂μca

)
�

]1
,

(A.7)

we derive∫
d3x

([−(
Dab

μ cb
)
�

]1 δ�

δAa
μ

− (
Dab

μ cb
) δ�1

δAa
μ

+

[(
g

2
f abccbcc

)
�

]1
δ�

δca

+

(
g

2
f abccbcc

)
δ�1

δca
+ J

[(
Aa

μ∂μca
)
�

]1
+ ba δ�1

δca

)
= 0. (A.8)

Applying the test operator δ2

δca(x)δAb
ν(y)

and setting all fields and sources equal to zero at the end

of the operation, except for J = m2, one obtains the Ward identity for the vacuum polarization
πab

μν :

∂μπab
μν(x, y) ≡ ∂x

μ

δ2�1

δAa
μ(x)δAb

v(y)
= −m2

(
δ2

[ ∫
d3z

(
Aa

μ∂μca
)
z
�

]1

δca(x)δAb
ν(y)

)

+ m2

⎛
⎝δ

[(
Dbd

ν cd
)
y
�

]1

δca(x)

⎞
⎠ . (A.9)

The first term is trivial, by using partial integration and the fact that we are considering the
Landau gauge ∂A = 0. Hence, the vacuum polarization in the massive Landau case is not
transverse, but rather subject to the following Ward identity at one loop:

∂μπab
μν(x, y) = m2

⎛
⎝δ

[(
Dbd

ν cd
)
y
�

]1

δca(x)

⎞
⎠ . (A.10)
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